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Abstract. Let Ω be a bounded domain in Cn and bΩ is smooth pseudoconvex
near z0 ∈ bΩ of finite type. Then there are constants c > 0 and ε′ > 0 such

that the Kobayashi metric, KΩ(z; X), satisfies KΩ(z; X) ≥ c|X|δ(z)−ε′ for all X ∈
T 1,0

z Cn in a neighborhood of z0. Here δ(z) denotes the distance from z to bΩ. As
an application, we prove the Hölder continuity of proper holomorphic maps onto
pseudoconvex domains.

1. Introduction.
Let Ω ⊂ Cn be a bounded domain in Cn. The purpose of this paper is to

study the boundary behavior of the Kobayashi metric, KΩ(z;X), for z near a point
z0 ∈ bΩ of finite type. Here finite type means finite 1-type in D’Angelo sense. We
will discuss the definition of finite type in section 2. Let us remind the reader of the
definition of Kobayashi metric. The function KΩ : T 1,0Ω → R on the holomorphic
tangent bundle, given by
KΩ(z; X) = inf{α > 0;∃f : 4→ Ω holomorphic with f(0) = z, f ′(0) = α−1X}

= inf{r−1; ∃f : 4r → Ω holomorphic with f(0) = z, f ′(0) = X},
is called the Kobayashi metric of Ω. (Here 4 denotes the unit disc and 4r =
{t; |t| < r} in C). For a fixed tangent vector X, we will show that KΩ(z; X) goes
to infinity as z approaches z0. Our main result is

Theorem 1. Let Ω be a bounded domain in Cn and let bΩ is smooth pseudoconvex
in a neighborhood U of z0 ∈ bΩ of finite type. Then there exist a neighborhood
V ⊂ U of z0 and constants c > 0, ε′ > 0 so that for all z ∈ Ω ∩ V and X ∈ T 1,0

z Cn

KΩ(z; X) ≥ c|X| · δ(z)−ε′

where δ(z) denotes the distance from z to bΩ.

Remark. The exponent ε′ in this theorem will not be the largest possible one.

As an application of Theorem 1, we can prove the Hölder continuity for a class
of proper holomorphic maps. Let Ω1, Ω2 ⊂⊂ Cn be bounded pseudoconvex do-
mains in Cn and Φ : Ω1 → Ω2 be a proper holomorphic map. When Ω1 satisfies
condition R, then the C∞-extendability of Φ holds [2,11]. If bΩ1 is of finite type,
then this is the case. Then the question is whether Φ can be extended smoothly
up to bΩ1 with information about Ω2. When Ω1, Ω2 are pseudoconvex domains,
Henkin has shown that the Hölder continuity of Φ up to Ω1 can be proved by using
the boundary behavior of Kobayashi metric near bΩ2 [12]. In other words, if the
infinitesimal Kobayashi metric on Ω2 grows sufficiently fast near the boundary of
Ω2 (i.e., KΩ2(z; X) ≥ |X|d(z, bΩ2)−ε for some ε ∈ (0, 1)), then every proper holo-
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morphic map Φ : Ω1 → Ω2 extends to a Hölder-continuous map of Ω1 onto Ω2. This
holds in particular if Ω2 is strictly pseudoconvex or if it is pseudoconvex with real
analytic boundary [10,12]. The following corollary is an immediate consequence of
Theorem 1.

Corollary 2. Let Ω1, Ω2, be bounded pseudoconvex domains in Cn with bΩ1 of
class C2 and bΩ2 C∞, and bΩ2 is of finite type in D’Angelo sense. Then there
exists an ε′′ > 0 such that any proper holomorphic map Φ : Ω1 → Ω2 extends to a
map Φ̂ : Ω1 → Ω2 which is Hölder continuous with exponent ε′′.

Proof. Since bΩ2 is pseudoconvex domain of finite type, we can cover bΩ2 by a finite
number of neighborhoods as in Theorem 1. Therefore there exist constants c1 > 0
and ε1 > 0 such that KΩ2(z;X) ≥ c1|X||r(z)|−ε1 for all z ∈ Ω2, X ∈ T 1,0

z Cn. If we
follow Diederich and Fornaess’ method, which was originated from Henkin, we can
get Corollary 2. ¤

In [10], Diederich and Fornaess proved a result similar to Theorem 1 when bΩ is
real analytic. The key point in their proof is a bumping theorem near a given point
z0 ∈ bΩ. By a bumping theorem, we mean that, we can push out the boundary
of Ω preserving pseudoconvexity near a given boundary point. Here we prove the
following bumping theorem which says that we can push out the boundary of Ω
with certain rate. In [5], Catlin pushed out the boundary of Ω as far as possible
when the domain is in C2.

Theorem 3. Let U ⊂ Cn be an open neighborhood of z0 ∈ Cn and r a C∞-
function on U such that dr 6= 0 everywhere on U , r(z0) = 0 and the hypersurface
S = {z ∈ U ; r(z) = 0} is pseudoconvex and that the type of z0 is finite. Then there
exist open neighborhoods V ′, V ′′ ⊂ U of z0, z0 ∈ V ′ ⊂⊂ V ′′, such that for each
z′ ∈ V ′ ∩ S, there is a 1-parameter family of C2 functions ρt(z′, ·) on V ′′ with the
following properties

(i) ρt(z′, z′) = 0,
(ii) ρt(z′, z) is C2 in z for z in V ′′ and smooth in t for 0 ≤ t ≤ t0, t0 uniform

of z′,
(iii) ∂ρt

∂t (z′, z) ≤ 0,
(iv) For z ∈ V ′′ − {z′}, ∂ρt

∂t (z′, z) < 0,
(v) The hypersurfaces St,z′ = {z; ρt(z′, z) = 0} are pseudoconvex. In fact, St,z′

is strictly pseudoconvex on St,z′ ∩ (V ′′ − {z′}).
(vi) One has r > 0 on St,z′ ∩ (V ′′ − {z′}).
(vii) There is K > 0 such that d(z′, z)K .t |ρt(z′, z)| for all z ∈ V ′′ ∩{z : r(z) ≤

0}, where d(z′, z) = |z − z′|2 and .t depends on t.

The proof of Theorem 3 can be found in section 3. In section 4, we will derive
Theorem 1 from Theorem 3.

I would like to thank David W. Catlin for several encouraging conversations we
had about the material in this paper.
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2. Finite 1-type domains in Cn.
Let Ω be a bounded pseudoconvex domain in Cn(n ≥ 2), with C∞ boundary

defining function r, i.e. Ω = {z ∈ Cn : r(z) < 0}. In this section we will study
finite 1-type domains in Cn.

Let v(g) be the order of vanishing at the origin of a holomorphic function g(t),
t ∈ C. If f = (g1, ...., gn) is a holomorphic function, then set v(f) = min1≤i≤n v(gi).

Let Ord(f) =
v(r ◦ f)

v(f)
where f is a 1-dimensional variety satisfying f(0) = z0 ∈ bΩ.

We call Ord(f) by “order of contact” of f . Then set

(1) ∆1(z0) = sup
f
Ord(f),

and we call ∆1(z0) as the type of z0 on bΩ. This type function is not an upper
semi-continuous function if n ≥ 3. In [8], D’Angelo found an upper bound of ∆1(z)
in a neighborhood of z0.

Theorem 4. ( D’Angelo; [8, Theorem 5.5] ) Let Ω be a pseudoconvex domain in
Cn and z0 ∈ bΩ. Suppose that ∆1(z0) < ∞. Then there is a neighborhood U of z0

such that for all z ∈ bΩ ∩ U , we have;

(2) ∆1(z) ≤ 22−n∆1(z0)n−1.

In [3], Catlin expressed (2) in a more quantitative form using a family of non-
singular 1-dimensional manifolds with decreasing diameter.

Theorem 5. ( Catlin; [3, Theorem 3.4] ) Let z0 be a point in the boundary of a
smoothly bounded pseudoconvex domain Ω. Assume that ∆1(z0) < ∞. Set T ′ =
22−n∆1(z0)n−1. Then for any number ε > 0, there exist a constant cε and a
neighborhood Uε of z0 such that for any nonsingular 1-dimensional manifold Mσ of
diameter σ contained in Uε,

(3) sup{|r(z)| : z ∈ Mσ} ≥ cεσ
T ′+ε.

Remark. Theorem 5 shows that the “order of contact” of a family of 1-dimensional
manifolds is less than or equal to T ′ + ε.

Let us take notations in Theorem 5 with ε = 1. Also set T = [[22−n(∆1(z0))n−1+
1]], where [[x]] denotes the smallest integer bigger than or equal to x. Therefore we
have a neighborhood V of z0 such that if Mσ is a 1-dimensional complex manifold
of diameter σ which passes through a point z′ in V ∩ bΩ, then

(4) sup{|r(z)| : z ∈ Mσ} ≥ cσT .

In Theorem 3.5 of [7], the author proved the following theorem which is an imple-
mentation of Catlin’s construction ([3], Theorem 9.2).

Theorem 6. Let z0 be a point in the boundary of a pseudoconvex domain Ω with
defining function r, and that satisfies ∆1(z0) < ∞. Let V be a neighborhood of z0

such that (4) holds. Let V ′′ ⊂⊂ V , and z0 ∈ V ′′. Then there exists ε > 0 such that
for all sufficiently small δ > 0, there is a smooth plurisubharmonic function λδ in
V ′′ such that |λδ| ≤ 1, and

(5)
∂∂λδ(L,L) & δ−2ε|L|2 ,

∂∂λδ(L,L) & |Lλδ|2 for z ∈ V ′′ ∩ S(δ).
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3. Proof of Theorem 3.
Let V ′′ ⊂⊂ V be a neighborhood of z0 ∈ bΩ2 such that Theorem 6 holds on V .

In the proof of Theorem 3.5 in [7], the author also proved that

(6) |Dαλδ| ≤ Cαδ−|α|,

for the plurisubharmonic weight functions λδ as in Theorem 6. Choose V ′ 3 z0 so
that V ′ ⊂⊂ V ′′. Now let us choose z′ ∈ V ′ and fix for a while. Let DR = {z ∈
Cn; |z| < R} and let φ ∈ C∞0 (D2 − D 1

4
) be a function that satisfies φ(z) = 1 for

z ∈ D1 −D 1
2
. Let N be a large integer to be chosen. For all k > N , set

(7) φk(z) = φ(2kεz),

where ε > 0 is the number in Theorem 6. Also set

(8) φN (z) = ψ(2Nεz),

where ψ ∈ C∞(Cn), ψ(z) = 1 if |z| ≥ 2, and ψ(z) = 0 if |z| ≤ 1. Therefore,

(9) |Dαφk(z)| ≤ Cα2εk|α|,

for all k ≥ N . Let a, t be numbers to be determined. Set ψk(z′, z) = φk(z − z′)
and λ2−ka = Λk, where λ2−ka is the plurisubharmonic function constructed as in
Theorem 6. For z ∈ V ′′, define

(10) E(z′, z) =
∞∑

k=N

2−4kψk(z′, z)(Λk(z)− 2).

By Theorem 6, Λk satisfies (5) and (6) in

V ′′ ∩ S(2−ka) = {z ∈ V ′′;−2−ka ≤ r(z) ≤ 2−ka},

provided N is sufficiently large. Suppose z ∈ suppψk. Then z ∈ suppψj only if
|j − k| ≤ 3ε−1 by (7) and (8). Therefore the sum in (10) is finite for each z, and
E(z′, z) is a C2-function by (6) and (10). We want to show that the Hessian of
E(z′, z) satisfies a good lower bounds. Let z ∈ suppψk and ψk(z) ≥ 1

4 . Then by
(5) and (9),

∂∂(ψk(z′, z)(Λk(z)− 2))(L, L)

= ∂∂ψk(z′, z)(L, L)(Λk(z)− 2) + 2Re(Lψk)(LΛk) + ψk∂∂Λk(L,L)

≥ ∂∂ψk(z′, z)(Λk(z)− 2)− 2Cη|Lψk|2 − 2η|LΛk|2 +
1
4
∂∂Λk(L, L)

≥ −C22εk|L|2 − 2C ′η22εk|L|2 +
1
8
∂∂Λk(L,L)

≥ (−C ′22εk +
1
8
a−2ε22εk)|L|2

& 22εk|L|2,
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if a and η are sufficiently small. If we look at the proof of Theorem 3.5 in [7], we
can see that ∂∂Λk(z)(L, L) ≈ ∂∂Λj(z)(L, L) if suppψk ∩ suppψj 6= ∅ (Remember
z ∈ suppψj for a fixed finite number of j’s independent of z′). Therefore we can
get

(11) ∂∂E(z′, z̃)(L, L) & 2−(4−2ε)k|L|2,
if a and η are sufficiently small (depending on ε). Since λ2−ka is defined on S2−ka

and since E(z′, z) ≈ −2−4k, λ2−ka and hence E(z′, z), is well defined on S2−ka for
all k sufficiently large (i.e., N is large enough). We now show how we push out the
boundary of Ω near z′. By the estimate (6) one can get;

(12) |DαE(z′, z)| . a−|α|2(|α|−4)k

for z ∈ suppψk. For all t sufficiently small, define

(13) ρt(z′, z) = r(z) + tE(z′, z).

Then ρt(z′, ·) is a defining function of a hypersurface in V ′′. In fact since ∂r
∂xn

≈ 1
(zn = xn + iyn), it follows that for all small t, ∂ρt

∂xn
(z′, z) ≈ 1. Hence for any

z ∈ V ′′ ∩ bΩ, there exists only one point z̃ on the segment through z obtained by
varying xn, which satisfies ρt(z′, z̃) = 0, for all t ≤ t0, provided that t0 is sufficiently
small. Notice that this t0 is independent of z′ ∈ V ′. Set St,z′ = {z; ρt(z′, z) = 0}.
Since E(z′, z′) = 0 and E(z′, z) < 0 for z ∈ V ′′ − {z′}, the properties (i), (ii),
(iii), (iv) and (vi) clearly holds. To prove (v), we claim that the hypersurface St,z′

is pseudoconvex at each point z̃ ∈ St,z′ , provided z is sufficiently close to z′, say
|z − z′| < d where d is independent of z′. Suppose L′′ρt(z′, z̃) = 0, and |L′′| = 1.
Then L′′ can be written as,

L′′ = t1L1 + .... + tn−1Ln−1 + eLn = T + eLn,

where L1, ...Ln−1, Ln are local frames defined on V ′′ such that Ljr = 0, j =
1, 2, ..., n− 1, and Lnr > 0 on V ′′. Let z̃ ∈ suppψk and ψk(z′, z̃) ≥ 1

4 . Then,

L′′ρt(z′, z̃) = L′′r(z̃) + tL′′E(z′, z̃)

= Tr(z̃) + eLnr(z̃) + t(TE(z′, z̃) + eLnE(z′, z̃))

= e(Lnr(z̃) + tLnE(z′, z̃)) + tTE(z′, z̃) = 0.

Since |tLnE(z′, z̃)| << 1, we have |e| . t|TE(z′, z̃)| . t << 1
2 if t is sufficiently

small. Again if |j − k| ≤ 3ε−1, then we can get

(14) ∂∂E(z′, z̃)(T, T ) & 2−4k∂∂Λj(z̃)(T, T ) & 2−4k|TΛj(z̃)|2

and

(15) ∂∂E(z′, z̃)(T, T ) & 2−4k∂∂Λk(T, T ) & 2−(4−2ε)k|T |2 & 2−(4−2ε)k.

This implies that

|TΛj(z̃)| . 22k(∂∂E(z′, z̃)(T, T ))
1
2 , and

|Tψj(z′, z̃)| . 2kε . 22k(∂∂E(z′, z̃)(T, T ))
1
2 .
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Thus we obtain that

(16) |e| . t|TE(z′, z̃)| . t2−2k(∂∂E(z′, z̃)(T, T ))
1
2 .

If we combine (12), (14), (15) and (16) we can get;

∂∂ρt(z′, z̃)(L′′, L
′′
) = ∂∂r(z̃)(L′′, L

′′
) + t∂∂E(z′, z̃)(L′′, L

′′
)

= ∂∂r(z̃)(T, T ) + t∂∂E(z′, z̃)(T, T ) +O(e)

≥ t(∂∂E(z′, z̃)(T, T ))
1
2 ((∂∂E(z′, z̃)(T, T ))

1
2 − C2−2k)

& t(∂∂E(z′, z̃)(T, T ))
1
2 (2(−2+ε)k − C2−2k)

≥ t2−2k(∂∂E(z′, z̃)(T, T ))
1
2 (2εk − C)

& t2(−4+ε)k|T |2

& t2(−4+ε)k|L′′|2,

if k is sufficiently large (i.e., N is large enough ). Here we have used the fact
that ∂∂r(z̃)(T, T ) ≥ 0 and |T | ≥ 1

2 . Also, we may assume that N can be chosen
independently to z′ ∈ V ′ ∩ bΩ2. This proves (v).

To prove (vii), let z ∈ suppψk. Then d(z′, z) ≈ 2−2εk, and ρt(z′, z) ≈ −2−4k.
Therefore (vii) holds for all z ∈ V ′′ ∩{z : r(z) ≤ 0} with K = 2ε−1, and this proves
Theorem 3. ¤
Remark. In (7) if we replace φk(z) by φk(z) = φ(kz) and Λk = λ2−ka by Λk =
λk−2ε−1 , then the hypersurfaces {z : ρt(z, z′) = 0} in Theorem 3 will be C∞. There-
fore we have a smooth bumping theorem. But in this case, the property (vii) of
Theorem 3 will not be true.

4. Boundary behavior of the Kobayashi metric.
We now want to use the result of Theorem 3 to prove a boundary behavior of

the Kobayashi metric, KΩ, near a point z0 of finite type, i.e., KΩ tends to infinite
near z0 at least as r−ε′ does for a defining function r of Ω near z0 and some ε′ > 0.
We adopt Diederich and Fornaess’ method [10] to estimate the Kobayashi metric
near bΩ2.

Theorem 7. ([10], Theorem 3) Let r be a real-valued C2-function on a neighbor-
hood Ṽ ′′ ⊂ Cn of 0 with the following properties:

(1) r(0) = 0
(2) dr 6= 0 everywhere on Ṽ ′′.
(3) The hypersurface S = {z ∈ Ṽ ′′ : r(z) = 0} is pseudoconvex from the side

r < 0.
Then, for every η, 0 < η < 1, there exists an open neighborhood Ṽ ′ ⊂ Ṽ ′′ of 0, a
strictly plurisubharmonic function ρ on U = {z ∈ Ṽ ′ : r(z) < 0} and a constant
C ≥ 1 such that −C|r|η < ρ < − 1

C |r|η on U . Furthermore, the data C and Ṽ ′ can
be chosen independently of small C2-perturbations of r on Ṽ ′′ satisfying conditions
(1), (2), (3) from above.

Let us now prove Theorem 1. Let z0 ∈ bΩ and V ′′ ⊃⊃ V ′ 3 z0 be the neigh-
borhoods as in Theorem 3. Choose also t0 > 0 sufficiently small so that Theorem
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3 holds on V ′′, and set ρ(z′, z) = ρt0(z
′, z). In a first step we apply Theorem 7 to

the family of hypersurfaces

Sz′ = {z ∈ V ′′; ρ(z′, z) = 0}

for z′ ∈ bΩ ∩ V ′. According to Theorem 7, we can choose an open neighborhood
Ṽ ′ ⊂ Ṽ ′′ of z0 in the z′-variable, a constant C > 0 such that for each z′ ∈ bΩ ∩ Ṽ ′,
there is a strictly plurisubharmonic function φz′(z) on Ṽ ′′∩{ρ(z′, z) < 0} satisfying

(17) −C|ρ(z′, z)|η < φz′(z) < − 1
C
|ρ(z′, z)|η

for all z ∈ Ṽ ′′ and for all z′ ∈ bΩ ∩ Ṽ ′. If we shrink V ′ and V ′′, we may assume
that V ′ = Ṽ ′ and V ′′ = Ṽ ′′. Combining (17) and the property (vii) of Theorem 3,
one can get the important estimate

(18)
1
C

(d(z′, z))2ε−1η(z′, z) ≤ |φz′(z)|

for all z ∈ V
′′ ∩ Ω, z′ ∈ bΩ ∩ V ′. The estimates (17), (18) and (vii) of Theorem 3

are the essential estimates necessary to prove the boundary behavior of Kobayashi
metric on Ω in [10]. If we follow Diederich and Fornaess procedure from this point
on, we can get, for all z ∈ V ′′ ∩ Ω and for all X ∈ Cn,

(19) KΩ(z; X) ≥ c|X||r(z)|−ε/4

with a constant c > 0 independent of z and X.

Remarks
(1) By the Remark in [10], ε′′ > 0 in Corollary 2 can be chosen arbitrary close

to ε′, i.e., ε′′ = ε′ − µ for arbitrary small µ > 0.
(2) Using the holomorphic coordinate functions up to the boundary [4], and

using the definition of finite type for the manifolds [6,7], Theorem 1 can be
proved if Ω1 ⊂⊂ M1 and Ω2 ⊂⊂ M2 for some Stein manifolds M1, M2.
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