A LOWER BOUND ON THE KOBAYASHI METRIC NEAR A POINT OF FINITE TYPE IN \mathbb{C}^n .

SANGHYUN CHO

ABSTRACT. Let Ω be a bounded domain in \mathbb{C}^n and $b\Omega$ is smooth pseudoconvex near $z_0 \in b\Omega$ of finite type. Then there are constants c > 0 and $\epsilon' > 0$ such that the Kobayashi metric, $K_{\Omega}(z; X)$, satisfies $K_{\Omega}(z; X) \geq c|X|\delta(z)^{-\epsilon'}$ for all $X \in T_z^{1,0}\mathbb{C}^n$ in a neighborhood of z_0 . Here $\delta(z)$ denotes the distance from z to $b\Omega$. As an application, we prove the Hölder continuity of proper holomorphic maps onto pseudoconvex domains.

1. Introduction.

Let $\Omega \subset \mathbb{C}^n$ be a bounded domain in \mathbb{C}^n . The purpose of this paper is to study the boundary behavior of the Kobayashi metric, $K_{\Omega}(z; X)$, for z near a point $z_0 \in b\Omega$ of finite type. Here finite type means finite 1-type in D'Angelo sense. We will discuss the definition of finite type in section 2. Let us remind the reader of the definition of Kobayashi metric. The function $K_{\Omega}: T^{1,0}\Omega \to \mathbb{R}$ on the holomorphic tangent bundle, given by

$$K_{\Omega}(z;X) = \inf\{\alpha > 0; \exists f : \triangle \to \Omega \text{ holomorphic with } f(0) = z, \ f'(0) = \alpha^{-1}X\}$$
$$= \inf\{r^{-1}; \exists f : \triangle_r \to \Omega \text{ holomorphic with } f(0) = z, \ f'(0) = X\},$$

is called the Kobayashi metric of Ω . (Here \triangle denotes the unit disc and $\triangle_r = \{t; |t| < r\}$ in \mathbb{C}). For a fixed tangent vector X, we will show that $K_{\Omega}(z; X)$ goes to infinity as z approaches z_0 . Our main result is

Theorem 1. Let Ω be a bounded domain in \mathbb{C}^n and let $b\Omega$ is smooth pseudoconvex in a neighborhood U of $z_0 \in b\Omega$ of finite type. Then there exist a neighborhood $V \subset U$ of z_0 and constants c > 0, $\epsilon' > 0$ so that for all $z \in \Omega \cap V$ and $X \in T_z^{1,0} \mathbb{C}^n$

$$K_{\Omega}(z;X) \ge c|X| \cdot \delta(z)^{-\epsilon}$$

where $\delta(z)$ denotes the distance from z to $b\Omega$.

Remark. The exponent ϵ' in this theorem will not be the largest possible one.

As an application of Theorem 1, we can prove the Hölder continuity for a class of proper holomorphic maps. Let $\Omega_1, \Omega_2 \subset \mathbb{C}^n$ be bounded pseudoconvex domains in \mathbb{C}^n and $\Phi : \Omega_1 \to \Omega_2$ be a proper holomorphic map. When Ω_1 satisfies condition R, then the C^{∞} -extendability of Φ holds [2,11]. If $b\Omega_1$ is of finite type, then this is the case. Then the question is whether Φ can be extended smoothly up to $b\Omega_1$ with information about Ω_2 . When Ω_1, Ω_2 are pseudoconvex domains, Henkin has shown that the Hölder continuity of Φ up to $\overline{\Omega}_1$ can be proved by using the boundary behavior of Kobayashi metric near $b\Omega_2$ [12]. In other words, if the infinitesimal Kobayashi metric on Ω_2 grows sufficiently fast near the boundary of Ω_2 (i.e., $K_{\Omega_2}(z; X) \geq |X| d(z, b\Omega_2)^{-\epsilon}$ for some $\epsilon \in (0, 1)$), then every proper holo-

SANGHYUN CHO

morphic map $\Phi: \Omega_1 \to \Omega_2$ extends to a Hölder-continuous map of $\overline{\Omega}_1$ onto $\overline{\Omega}_2$. This holds in particular if Ω_2 is strictly pseudoconvex or if it is pseudoconvex with real analytic boundary [10,12]. The following corollary is an immediate consequence of Theorem 1.

Corollary 2. Let Ω_1 , Ω_2 , be bounded pseudoconvex domains in \mathbb{C}^n with $b\Omega_1$ of class C^2 and $b\Omega_2 C^{\infty}$, and $b\Omega_2$ is of finite type in D'Angelo sense. Then there exists an $\epsilon'' > 0$ such that any proper holomorphic map $\Phi : \Omega_1 \to \Omega_2$ extends to a map $\hat{\Phi}: \overline{\Omega}_1 \to \overline{\Omega}_2$ which is Hölder continuous with exponent ϵ'' .

Proof. Since $b\Omega_2$ is pseudoconvex domain of finite type, we can cover $b\Omega_2$ by a finite number of neighborhoods as in Theorem 1. Therefore there exist constants $c_1 > 0$ and $\epsilon_1 > 0$ such that $K_{\Omega_2}(z; X) \geq c_1 |X| |r(z)|^{-\epsilon_1}$ for all $z \in \Omega_2, X \in T_z^{1,0} \mathbb{C}^n$. If we follow Diederich and Fornaess' method, which was originated from Henkin, we can get Corollary 2.

In [10], Diederich and Fornaess proved a result similar to Theorem 1 when $b\Omega$ is real analytic. The key point in their proof is a bumping theorem near a given point $z_0 \in b\Omega$. By a bumping theorem, we mean that, we can push out the boundary of Ω preserving pseudoconvexity near a given boundary point. Here we prove the following bumping theorem which says that we can push out the boundary of Ω with certain rate. In [5], Catlin pushed out the boundary of Ω as far as possible when the domain is in \mathbb{C}^2 .

Theorem 3. Let $U \subset \mathbb{C}^n$ be an open neighborhood of $z_0 \in \mathbb{C}^n$ and $r \in \mathbb{C}^\infty$ function on U such that $dr \neq 0$ everywhere on U, $r(z_0) = 0$ and the hypersurface $S = \{z \in U; r(z) = 0\}$ is pseudoconvex and that the type of z_0 is finite. Then there exist open neighborhoods $V', V'' \subset U$ of $z_0, z_0 \in V' \subset V''$, such that for each $z' \in V' \cap S$, there is a 1-parameter family of C^2 functions $\rho_t(z', \cdot)$ on V'' with the following properties

- (i) $\rho_t(z', z') = 0$,
- (ii) $\rho_t(z',z)$ is C^2 in z for z in V'' and smooth in t for $0 \le t \le t_0$, t_0 uniform (iii) $\frac{\partial \rho_t}{\partial t}(z', z) \leq 0,$

- (iv) For $z \in V'' \{z'\}$, $\frac{\partial \rho_t}{\partial t}(z', z) < 0$, (v) The hypersurfaces $S_{t,z'} = \{z; \rho_t(z', z) = 0\}$ are pseudoconvex. In fact, $S_{t,z'}$ is strictly pseudoconvex on $S_{t,z'} \cap (V'' - \{z'\})$.
- (vi) One has r > 0 on $S_{t,z'} \cap (V'' \{z'\})$.
- (vii) There is K > 0 such that $d(z', z)^K \lesssim_t |\rho_t(z', z)|$ for all $z \in V'' \cap \{z : r(z) \le 0\}$, where $d(z', z) = |z z'|^2$ and \lesssim_t depends on t.

The proof of Theorem 3 can be found in section 3. In section 4, we will derive Theorem 1 from Theorem 3.

I would like to thank David W. Catlin for several encouraging conversations we had about the material in this paper.

2. Finite 1-type domains in \mathbb{C}^n .

Let Ω be a bounded pseudoconvex domain in $\mathbb{C}^n (n \ge 2)$, with C^{∞} boundary defining function r, i.e. $\Omega = \{z \in \mathbb{C}^n : r(z) < 0\}$. In this section we will study finite 1-type domains in \mathbb{C}^n .

Let v(g) be the order of vanishing at the origin of a holomorphic function g(t), $t \in \mathbb{C}$. If $f = (g_1, ..., g_n)$ is a holomorphic function, then set $v(f) = \min_{1 \le i \le n} v(g_i)$. Let $\mathcal{O}rd(f) = \frac{v(r \circ f)}{v(f)}$ where f is a 1-dimensional variety satisfying $f(0) = z_0 \in b\Omega$. We call $\mathcal{O}rd(f)$ by "order of contact" of f. Then set

(1)
$$\Delta_1(z_0) = \sup_f \mathcal{O}rd(f),$$

and we call $\Delta_1(z_0)$ as the type of z_0 on $b\Omega$. This type function is not an upper semi-continuous function if $n \geq 3$. In [8], D'Angelo found an upper bound of $\Delta_1(z)$ in a neighborhood of z_0 .

Theorem 4. (D'Angelo; [8, Theorem 5.5]) Let Ω be a pseudoconvex domain in \mathbb{C}^n and $z_0 \in b\Omega$. Suppose that $\Delta_1(z_0) < \infty$. Then there is a neighborhood U of z_0 such that for all $z \in b\Omega \cap U$, we have;

(2)
$$\Delta_1(z) \le 2^{2-n} \Delta_1(z_0)^{n-1}.$$

In [3], Catlin expressed (2) in a more quantitative form using a family of nonsingular 1-dimensional manifolds with decreasing diameter.

Theorem 5. (Catlin; [3, Theorem 3.4]) Let z_0 be a point in the boundary of a smoothly bounded pseudoconvex domain Ω . Assume that $\Delta_1(z_0) < \infty$. Set $T' = 2^{2-n}\Delta_1(z_0)^{n-1}$. Then for any number $\epsilon > 0$, there exist a constant c_{ε} and a neighborhood U_{ε} of z_0 such that for any nonsingular 1-dimensional manifold M_{σ} of diameter σ contained in U_{ε} ,

(3)
$$\sup\{|r(z)|: z \in M_{\sigma}\} \ge c_{\epsilon} \sigma^{T'+\epsilon}.$$

Remark. Theorem 5 shows that the "order of contact" of a family of 1-dimensional manifolds is less than or equal to $T' + \epsilon$.

Let us take notations in Theorem 5 with $\epsilon = 1$. Also set $T = [2^{2-n}(\Delta_1(z_0))^{n-1} + 1]$, where [x] denotes the smallest integer bigger than or equal to x. Therefore we have a neighborhood V of z_0 such that if M_{σ} is a 1-dimensional complex manifold of diameter σ which passes through a point z' in $V \cap b\Omega$, then

(4)
$$\sup\{|r(z)|: z \in M_{\sigma}\} \ge c\sigma^{T}$$

In Theorem 3.5 of [7], the author proved the following theorem which is an implementation of Catlin's construction ([3], Theorem 9.2).

Theorem 6. Let z_0 be a point in the boundary of a pseudoconvex domain Ω with defining function r, and that satisfies $\Delta_1(z_0) < \infty$. Let V be a neighborhood of z_0 such that (4) holds. Let $V'' \subset \subset V$, and $z_0 \in V''$. Then there exists $\epsilon > 0$ such that for all sufficiently small $\delta > 0$, there is a smooth plurisubharmonic function λ_{δ} in V'' such that $|\lambda_{\delta}| \leq 1$, and

(5)
$$\frac{\partial \partial \lambda_{\delta}(L,L) \gtrsim \delta^{-2\epsilon} |L|^2}{\partial \overline{\partial} \lambda_{\delta}(L,\overline{L}) \gtrsim |L\lambda_{\delta}|^2 \quad for \quad z \in V'' \cap S(\delta). }$$

SANGHYUN CHO

3. Proof of Theorem 3.

Let $V'' \subset V$ be a neighborhood of $z_0 \in b\Omega_2$ such that Theorem 6 holds on V. In the proof of Theorem 3.5 in [7], the author also proved that

(6)
$$|D^{\alpha}\lambda_{\delta}| \le C_{\alpha}\delta^{-|\alpha|},$$

for the plurisubharmonic weight functions λ_{δ} as in Theorem 6. Choose $V' \ni z_0$ so that $V' \subset \subset V''$. Now let us choose $z' \in V'$ and fix for a while. Let $D_R = \{z \in \mathbb{C}^n; |z| < R\}$ and let $\phi \in C_0^{\infty}(D_2 - D_{\frac{1}{4}})$ be a function that satisfies $\phi(z) = 1$ for $z \in D_1 - D_{\frac{1}{2}}$. Let N be a large integer to be chosen. For all k > N, set

(7)
$$\phi_k(z) = \phi(2^{k\epsilon}z),$$

where $\epsilon > 0$ is the number in Theorem 6. Also set

(8)
$$\phi_N(z) = \psi(2^{N\epsilon} z),$$

where $\psi \in C^{\infty}(\mathbb{C}^n)$, $\psi(z) = 1$ if $|z| \ge 2$, and $\psi(z) = 0$ if $|z| \le 1$. Therefore,

(9)
$$|D^{\alpha}\phi_k(z)| \le C_{\alpha} 2^{\epsilon k|\alpha|},$$

for all $k \ge N$. Let a, t be numbers to be determined. Set $\psi_k(z', z) = \phi_k(z - z')$ and $\lambda_{2^{-k}a} = \Lambda_k$, where $\lambda_{2^{-k}a}$ is the plurisubharmonic function constructed as in Theorem 6. For $z \in V''$, define

(10)
$$E(z',z) = \sum_{k=N}^{\infty} 2^{-4k} \psi_k(z',z) (\Lambda_k(z) - 2).$$

By Theorem 6, Λ_k satisfies (5) and (6) in

$$V'' \cap S(2^{-k}a) = \{ z \in V''; -2^{-k}a \le r(z) \le 2^{-k}a \},\$$

provided N is sufficiently large. Suppose $z \in supp\psi_k$. Then $z \in supp\psi_j$ only if $|j-k| \leq 3\epsilon^{-1}$ by (7) and (8). Therefore the sum in (10) is finite for each z, and E(z', z) is a C^2 -function by (6) and (10). We want to show that the Hessian of E(z', z) satisfies a good lower bounds. Let $z \in supp\psi_k$ and $\psi_k(z) \geq \frac{1}{4}$. Then by (5) and (9),

$$\begin{split} \partial \overline{\partial}(\psi_k(z',z)(\Lambda_k(z)-2))(L,\overline{L}) \\ &= \partial \overline{\partial}\psi_k(z',z)(L,\overline{L})(\Lambda_k(z)-2) + 2Re(L\psi_k)(\overline{L}\Lambda_k) + \psi_k \partial \overline{\partial}\Lambda_k(L,\overline{L}) \\ &\geq \partial \overline{\partial}\psi_k(z',z)(\Lambda_k(z)-2) - 2C_\eta |L\psi_k|^2 - 2\eta |\overline{L}\Lambda_k|^2 + \frac{1}{4} \partial \overline{\partial}\Lambda_k(L,\overline{L}) \\ &\geq -C2^{2\epsilon k} |L|^2 - 2C'_\eta 2^{2\epsilon k} |L|^2 + \frac{1}{8} \partial \overline{\partial}\Lambda_k(L,\overline{L}) \\ &\geq (-C'2^{2\epsilon k} + \frac{1}{8}a^{-2\epsilon}2^{2\epsilon k})|L|^2 \\ &\gtrsim 2^{2\epsilon k} |L|^2, \end{split}$$

if a and η are sufficiently small. If we look at the proof of Theorem 3.5 in [7], we can see that $\partial \overline{\partial} \Lambda_k(z)(L,\overline{L}) \approx \partial \overline{\partial} \Lambda_j(z)(L,\overline{L})$ if $supp\psi_k \cap supp\psi_j \neq \emptyset$ (Remember $z \in supp\psi_j$ for a fixed finite number of j's independent of z'). Therefore we can get

(11)
$$\partial \overline{\partial} E(z', \tilde{z})(L, \overline{L}) \gtrsim 2^{-(4-2\epsilon)k} |L|^2,$$

if a and η are sufficiently small (depending on ϵ). Since $\lambda_{2^{-k}a}$ is defined on $S_{2^{-k}a}$ and since $E(z', z) \approx -2^{-4k}$, $\lambda_{2^{-k}a}$ and hence E(z', z), is well defined on $S_{2^{-k}a}$ for all k sufficiently large (i.e., N is large enough). We now show how we push out the boundary of Ω near z'. By the estimate (6) one can get;

(12)
$$|D^{\alpha}E(z',z)| \lesssim a^{-|\alpha|} 2^{(|\alpha|-4)k}$$

for $z \in supp\psi_k$. For all t sufficiently small, define

(13)
$$\rho_t(z', z) = r(z) + tE(z', z).$$

Then $\rho_t(z', \cdot)$ is a defining function of a hypersurface in V''. In fact since $\frac{\partial r}{\partial x_n} \approx 1$ $(z_n = x_n + iy_n)$, it follows that for all small t, $\frac{\partial \rho_t}{\partial x_n}(z', z) \approx 1$. Hence for any $z \in V'' \cap b\Omega$, there exists only one point \tilde{z} on the segment through z obtained by varying x_n , which satisfies $\rho_t(z', \tilde{z}) = 0$, for all $t \leq t_0$, provided that t_0 is sufficiently small. Notice that this t_0 is independent of $z' \in V'$. Set $S_{t,z'} = \{z; \rho_t(z', z) = 0\}$. Since E(z', z') = 0 and E(z', z) < 0 for $z \in V'' - \{z'\}$, the properties (i), (ii), (iii), (iv) and (vi) clearly holds. To prove (v), we claim that the hypersurface $S_{t,z'}$ is pseudoconvex at each point $\tilde{z} \in S_{t,z'}$, provided z is sufficiently close to z', say |z - z'| < d where d is independent of z'. Suppose $L''\rho_t(z', \tilde{z}) = 0$, and |L''| = 1. Then L'' can be written as,

$$L'' = t_1 L_1 + \dots + t_{n-1} L_{n-1} + eL_n = T + eL_n,$$

where $L_1, ..., L_{n-1}, L_n$ are local frames defined on V'' such that $L_j r = 0, j = 1, 2, ..., n-1$, and $L_n r > 0$ on V''. Let $\tilde{z} \in supp \psi_k$ and $\psi_k(z', \tilde{z}) \geq \frac{1}{4}$. Then,

$$L''\rho_t(z',\tilde{z}) = L''r(\tilde{z}) + tL''E(z',\tilde{z})$$

= $Tr(\tilde{z}) + eL_nr(\tilde{z}) + t(TE(z',\tilde{z}) + eL_nE(z',\tilde{z}))$
= $e(L_nr(\tilde{z}) + tL_nE(z',\tilde{z})) + tTE(z',\tilde{z}) = 0.$

Since $|tL_n E(z', \tilde{z})| \ll 1$, we have $|e| \lesssim t |TE(z', \tilde{z})| \lesssim t \ll \frac{1}{2}$ if t is sufficiently small. Again if $|j - k| \leq 3\epsilon^{-1}$, then we can get

(14)
$$\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}) \gtrsim 2^{-4k} \partial \overline{\partial} \Lambda_j(\tilde{z})(T, \overline{T}) \gtrsim 2^{-4k} |T\Lambda_j(\tilde{z})|^2$$

and

(15)
$$\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}) \gtrsim 2^{-4k} \partial \overline{\partial} \Lambda_k(T, \overline{T}) \gtrsim 2^{-(4-2\epsilon)k} |T|^2 \gtrsim 2^{-(4-2\epsilon)k}.$$

This implies that

$$|T\Lambda_j(\tilde{z})| \lesssim 2^{2k} (\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}))^{\frac{1}{2}}, \text{ and} |T\psi_j(z', \tilde{z})| \lesssim 2^{k\epsilon} \lesssim 2^{2k} (\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}))^{\frac{1}{2}}.$$

Thus we obtain that

(16)
$$|e| \lesssim t |TE(z', \tilde{z})| \lesssim t 2^{-2k} (\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}))^{\frac{1}{2}}.$$

If we combine (12), (14), (15) and (16) we can get;

$$\begin{aligned} \partial \overline{\partial} \rho_t(z', \tilde{z})(L'', \overline{L}'') &= \partial \overline{\partial} r(\tilde{z})(L'', \overline{L}'') + t \partial \overline{\partial} E(z', \tilde{z})(L'', \overline{L}'') \\ &= \partial \overline{\partial} r(\tilde{z})(T, \overline{T}) + t \partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}) + \mathcal{O}(e) \\ &\geq t (\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}))^{\frac{1}{2}} ((\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}))^{\frac{1}{2}} - C2^{-2k}) \\ &\gtrsim t (\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}))^{\frac{1}{2}} (2^{(-2+\epsilon)k} - C2^{-2k}) \\ &\geq t2^{-2k} (\partial \overline{\partial} E(z', \tilde{z})(T, \overline{T}))^{\frac{1}{2}} (2^{\epsilon k} - C) \\ &\gtrsim t2^{(-4+\epsilon)k} |T|^2 \\ &\gtrsim t2^{(-4+\epsilon)k} |L''|^2, \end{aligned}$$

if k is sufficiently large (i.e., N is large enough). Here we have used the fact that $\partial \overline{\partial} r(\tilde{z})(T,\overline{T}) \geq 0$ and $|T| \geq \frac{1}{2}$. Also, we may assume that N can be chosen independently to $z' \in V' \cap b\Omega_2$. This proves (v).

To prove (vii), let $z \in supp\psi_k$. Then $d(z', z) \approx 2^{-2\epsilon k}$, and $\rho_t(z', z) \approx -2^{-4k}$. Therefore (vii) holds for all $z \in V'' \cap \{z : r(z) \leq 0\}$ with $K = 2\epsilon^{-1}$, and this proves Theorem 3. \Box

Remark. In (7) if we replace $\phi_k(z)$ by $\phi_k(z) = \phi(kz)$ and $\Lambda_k = \lambda_{2^{-k}a}$ by $\Lambda_k = \lambda_{k^{-2\epsilon^{-1}}}$, then the hypersurfaces $\{z : \rho_t(z, z') = 0\}$ in Theorem 3 will be C^{∞} . Therefore we have a smooth bumping theorem. But in this case, the property (vii) of Theorem 3 will not be true.

4. Boundary behavior of the Kobayashi metric.

We now want to use the result of Theorem 3 to prove a boundary behavior of the Kobayashi metric, K_{Ω} , near a point z_0 of finite type, i.e., K_{Ω} tends to infinite near z_0 at least as $r^{-\epsilon'}$ does for a defining function r of Ω near z_0 and some $\epsilon' > 0$. We adopt Diederich and Fornaess' method [10] to estimate the Kobayashi metric near $b\Omega_2$.

Theorem 7. ([10], Theorem 3) Let r be a real-valued C^2 -function on a neighborhood $\widetilde{V}'' \subset \mathbb{C}^n$ of 0 with the following properties:

- (1) r(0) = 0
- (2) $dr \neq 0$ everywhere on \widetilde{V}'' .
- (3) The hypersurface $S = \{z \in \widetilde{V}'' : r(z) = 0\}$ is pseudoconvex from the side r < 0.

Then, for every η , $0 < \eta < 1$, there exists an open neighborhood $\widetilde{V}' \subset \widetilde{V}''$ of 0, a strictly plurisubharmonic function ρ on $U = \{z \in \widetilde{V}' : r(z) < 0\}$ and a constant $C \ge 1$ such that $-C|r|^{\eta} < \rho < -\frac{1}{C}|r|^{\eta}$ on U. Furthermore, the data C and \widetilde{V}' can be chosen independently of small C^2 -perturbations of r on \widetilde{V}'' satisfying conditions (1), (2), (3) from above.

Let us now prove Theorem 1. Let $z_0 \in b\Omega$ and $V'' \supset V' \ni z_0$ be the neighborhoods as in Theorem 3. Choose also $t_0 > 0$ sufficiently small so that Theorem

3 holds on V'', and set $\rho(z', z) = \rho_{t_0}(z', z)$. In a first step we apply Theorem 7 to the family of hypersurfaces

$$S_{z'} = \{ z \in V''; \rho(z', z) = 0 \}$$

for $z' \in b\Omega \cap V'$. According to Theorem 7, we can choose an open neighborhood $\widetilde{V}' \subset \widetilde{V}''$ of z_0 in the z'-variable, a constant C > 0 such that for each $z' \in b\Omega \cap \widetilde{V}'$, there is a strictly plurisubharmonic function $\phi_{z'}(z)$ on $\widetilde{V}'' \cap \{\rho(z', z) < 0\}$ satisfying

(17)
$$-C|\rho(z',z)|^{\eta} < \phi_{z'}(z) < -\frac{1}{C}|\rho(z',z)|^{\eta}$$

for all $z \in \widetilde{V}''$ and for all $z' \in b\Omega \cap \widetilde{V}'$. If we shrink V' and V'', we may assume that $V' = \widetilde{V}'$ and $V'' = \widetilde{V}''$. Combining (17) and the property (vii) of Theorem 3, one can get the important estimate

(18)
$$\frac{1}{C} (d(z',z))^{2\epsilon^{-1}\eta}(z',z) \le |\phi_{z'}(z)|$$

for all $z \in \overline{V}'' \cap \overline{\Omega}$, $z' \in b\Omega \cap V'$. The estimates (17), (18) and (vii) of Theorem 3 are the essential estimates necessary to prove the boundary behavior of Kobayashi metric on Ω in [10]. If we follow Diederich and Fornaess procedure from this point on, we can get, for all $z \in V'' \cap \Omega$ and for all $X \in \mathbb{C}^n$,

(19)
$$K_{\Omega}(z;X) \ge c|X||r(z)|^{-\epsilon/4}$$

with a constant c > 0 independent of z and X.

Remarks

- (1) By the Remark in [10], $\epsilon'' > 0$ in Corollary 2 can be chosen arbitrary close to ϵ' , i.e., $\epsilon'' = \epsilon' \mu$ for arbitrary small $\mu > 0$.
- (2) Using the holomorphic coordinate functions up to the boundary [4], and using the definition of finite type for the manifolds [6,7], Theorem 1 can be proved if $\Omega_1 \subset \subset M_1$ and $\Omega_2 \subset \subset M_2$ for some Stein manifolds M_1, M_2 .

References

- 1. Bedford, E., *Proper holomorphic mappings*, Bull. of A.M.S. (N.S.) **10** (1984), 157–175.
- Bell, S. and Catlin, D., Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385–396.
- Catlin, D., Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1987), 131–191.
- 4. ____, A Newlander-Nirenberg theorem for manifolds with boundary, Mich. Math. J. 35 (1988), 233–240.
- 5. _____, Estimates of invariant metrics on pseudoconex domains of dimension two, Math. Z. **200** (1989), 429–466.
- 6. Cho, S.H., On the extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, dissertation, Purdue University, 1991.

SANGHYUN CHO

- 7. _____, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, preprint (1991).
- D'Angelo, J. P., Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), 615–637.
- 9. Diederich, K. and Fornaess, J. E., *Pseudoconvex domains; Bounded strictly plurisubharmonic exhaustion functions*, Invent. Math. **39** (1977), 129–141.
- 10. _____, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math. **110** (1979), 575–592.
- 11. _____, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363–384.
- Henkin, G., An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Dolk. Akad. Nauk SSSR 14 (1973), 1026–1029 (Soviet Math. Dolk. 14 (1973), 858–862).

keywords. Kobayashi metric, finte 1-type, Hölder continuity, proper holomorphic maps, bumping family of pseudoconvex domains, plurisubharmonic functions.

1980 Mathematics subject classifications: 32H15

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 E-mail: shcho@math.purdue.edu