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ABSTRACT. Let © be a bounded domain in C™ and b2 is smooth pseudoconvex
near zg € bQ) of finite type. Then there are constants ¢ > 0 and ¢ > 0 such
that the Kobayashi metric, Kq(z; X), satisfies Kq(z; X) > ¢|X|6(z) ¢ for all X €
Tzl’O(C" in a neighborhood of zg. Here §(z) denotes the distance from z to bQ. As
an application, we prove the Holder continuity of proper holomorphic maps onto
pseudoconvex domains.

1. Introduction.

Let Q € C™ be a bounded domain in C". The purpose of this paper is to
study the boundary behavior of the Kobayashi metric, Kq(z; X), for z near a point
zp € bQ of finite type. Here finite type means finite 1-type in D’Angelo sense. We
will discuss the definition of finite type in section 2. Let us remind the reader of the
definition of Kobayashi metric. The function Kq : T1°Q — R on the holomorphic
tangent bundle, given by

Ko(z; X) =inf{a > 0;3f : A — Q holomorphic with f(0) =z, f'(0) =a 'X}
= inf{r~1;3f : A, — Q holomorphic with f(0) =z, f'(0) = X},
is called the Kobayashi metric of 2. (Here A denotes the unit disc and A, =

{t;|t] < r} in C). For a fixed tangent vector X, we will show that Kq(z; X) goes
to infinity as z approaches zg. Our main result is

Theorem 1. Let ) be a bounded domain in C" and let bS) is smooth pseudoconvex
in a neighborhood U of zo € b) of finite type. Then there exist a meighborhood
V C U of zg and constants ¢ > 0, € > 0 so that for all z € QNV and X € T}O°C"

Ko(z X) > o X|-6(2)¢
where §(z) denotes the distance from z to bSQ.
Remark. The exponent €' in this theorem will not be the largest possible one.

As an application of Theorem 1, we can prove the Holder continuity for a class
of proper holomorphic maps. Let 4,y CC C" be bounded pseudoconvex do-
mains in C" and ® : ; — 5 be a proper holomorphic map. When €2; satisfies
condition R, then the C'*°-extendability of ® holds [2,11]. If bQ2; is of finite type,
then this is the case. Then the question is whether ® can be extended smoothly
up to b2; with information about Q5. When 21,2 are pseudoconvex domains,
Henkin has shown that the Holder continuity of ® up to £; can be proved by using
the boundary behavior of Kobayashi metric near b{2y [12]. In other words, if the
infinitesimal Kobayashi metric on 25 grows sufficiently fast near the boundary of
Oy (ie., Ka,(z; X) > | X|d(z,bQ22) € for some € € (0,1)), then every proper holo-
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morphic map ® : Q; — Oy extends to a Holder-continuous map of £; onto Q5. This
holds in particular if €25 is strictly pseudoconvex or if it is pseudoconvex with real
analytic boundary [10,12]. The following corollary is an immediate consequence of
Theorem 1.

Corollary 2. Let 21, Q5, be bounded pseudoconvex domains in C™ with bS2; of
class C? and by C, and by is of finite type in D’Angelo sense. Then there
exists an €' > 0 such that any proper holomorphic map ® : Qy — Qo extends to a
map d : Qy — Qo which is Hélder continuous with exponent €”.

Proof. Since b()5 is pseudoconvex domain of finite type, we can cover b{)5 by a finite
number of neighborhoods as in Theorem 1. Therefore there exist constants ¢; > 0
and €; > 0 such that Kq,(z; X) > c1|X||r(2)|7 for all z € Qo, X € THOC™. If we
follow Diederich and Fornaess’ method, which was originated from Henkin, we can
get Corollary 2. [

In [10], Diederich and Fornaess proved a result similar to Theorem 1 when b2 is
real analytic. The key point in their proof is a bumping theorem near a given point
zo € bQ). By a bumping theorem, we mean that, we can push out the boundary
of ) preserving pseudoconvexity near a given boundary point. Here we prove the
following bumping theorem which says that we can push out the boundary of €2
with certain rate. In [5], Catlin pushed out the boundary of Q2 as far as possible
when the domain is in C2.

Theorem 3. Let U C C" be an open neighborhood of z9 € C" and r a C*-
function on U such that dr # 0 everywhere on U, r(z9) = 0 and the hypersurface
S ={ze€U;r(z) =0} is pseudoconvezr and that the type of zo is finite. Then there
exist open neighborhoods V', V"' C U of zg, z0 € V' cC V", such that for each
2 € V'NS, there is a 1-parameter family of C? functions pi(2',-) on V' with the
following properties
(i) pe(z',2") =0,
(i) pe(2,2) is C? in z for z in V" and smooth in t for 0 < t < tg, to uniform
of 2/,
(i) %(=',) <0,
(iv) For z e V" —{z'}, %(z’,z) <0,
(v) The hypersurfaces Sy = {z;pi(#', z) = 0} are pseudoconvex. In fact, Sy .
is strictly pseudoconvexr on S, N (V" —{2'}).
(vi) One hasr >0 on S; . N (V" —{2'}).
(vii) There is K > 0 such that d(z',2)% <i |pe(2',2)| for all z € V' 0 {z:7(z) <
0}, where d(2',2) = |z — 2'|* and <; depends on t.

The proof of Theorem 3 can be found in section 3. In section 4, we will derive
Theorem 1 from Theorem 3.

I would like to thank David W. Catlin for several encouraging conversations we
had about the material in this paper.
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2. Finite 1-type domains in C".

Let © be a bounded pseudoconvex domain in C"(n > 2), with C'*° boundary
defining function r, i.e. Q = {z € C" : r(z) < 0}. In this section we will study
finite 1-type domains in C™.

Let v(g) be the order of vanishing at the origin of a holomorphic function g(t),
teC. If f=(g1,-...,gn) is a holomorphic function, then set v(f) = min;<;<, v(g;)-
Let Ord(f) = 2 °f)

v(f)
We call Ord(f) by “order of contact” of f. Then set

(1) Ai(z0) = Sljlrp Ord(f),

where f is a 1-dimensional variety satisfying f(0) = zg € b€2.

and we call Aj(zp) as the type of zy on b§). This type function is not an upper
semi-continuous function if n > 3. In [8], D’Angelo found an upper bound of A4 (z2)
in a neighborhood of zj.

Theorem 4. ( D’Angelo; [8, Theorem 5.5] ) Let Q be a pseudoconver domain in
C™ and zy € bS2. Suppose that Aq(zg) < oco. Then there is a neighborhood U of zg
such that for all z € bQ N U, we have;

(2) Al(Z) S 22_nA1<2’0)n_1.

In [3], Catlin expressed (2) in a more quantitative form using a family of non-
singular 1-dimensional manifolds with decreasing diameter.

Theorem 5. ( Catlin; [3, Theorem 3.4] ) Let zy be a point in the boundary of a
smoothly bounded pseudoconver domain Q. Assume that Aq(zp) < oo. Set T' =
227" Ay (29)" L. Then for any number ¢ > 0, there exist a constant c. and a
neighborhood U, of zy such that for any nonsingular 1-dimensional manifold M, of
diameter o contained in Ug,

(3) sup{|r(2)| : z € My} > cco™ <.

Remark. Theorem 5 shows that the “order of contact” of a family of 1-dimensional
manifolds is less than or equal to T + €.

Let us take notations in Theorem 5 with € = 1. Alsoset T' = [227"(A1(20))" 1 +
1], where [x] denotes the smallest integer bigger than or equal to x. Therefore we
have a neighborhood V' of zy such that if M, is a 1-dimensional complex manifold
of diameter o which passes through a point 2’ in V N bS2, then

(4) sup{|r(2)| : z € My} > co™.

In Theorem 3.5 of [7], the author proved the following theorem which is an imple-
mentation of Catlin’s construction ([3], Theorem 9.2).

Theorem 6. Let zg be a point in the boundary of a pseudoconver domain €2 with
defining function r, and that satisfies A1(zp) < co. Let V' be a neighborhood of zg
such that (4) holds. Let V" CC V, and zo € V. Then there exists € > 0 such that
for all sufficiently small 6 > 0, there is a smooth plurisubharmonic function \s in
V" such that |As| <1, and

ONs(L,L) Z 6 *|L| ,

5 _ _
©) 00As(L, L) 2 |LAs|* for z€V"NS(9).
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3. Proof of Theorem 3.
Let V" CcC V be a neighborhood of zy € b€y such that Theorem 6 holds on V.
In the proof of Theorem 3.5 in [7], the author also proved that

(6) |D\s| < Cpd™ 1o,

for the plurisubharmonic weight functions As as in Theorem 6. Choose V' 3 z; so
that V/ cC V”. Now let us choose z’ € V' and fix for a while. Let D = {z €
C";|z| < R} and let ¢ € C§°(D2 — D1) be a function that satisfies ¢(z) =1 for
z€e€ Dy — D%. Let N be a large integer to be chosen. For all £ > N, set

(7) o (2) = 9(2°2),

where € > 0 is the number in Theorem 6. Also set

(8) on(2) = (27 2),

where ¢p € C°(C"), ¢¥(z) = 1if |z| > 2, and ¥(2) = 0 if |z| < 1. Therefore,
(9) D1 (2)] < Ca21,

for all k > N. Let a, t be numbers to be determined. Set ¥y (2',2) = ¢r(z — 2/)
and A\g—x, = A, where A\g—x, is the plurisubharmonic function constructed as in
Theorem 6. For z € V", define

oo

(10) E(,2) =) 27 %yp(¢, 2)(Ae(2) — 2).
k=N
By Theorem 6, Ay, satisfies (5) and (6) in
V"N S22 a) = {2z e V";—27%a < r(2) <27%a},

provided N is sufficiently large. Suppose z € suppyy. Then z € suppy; only if
|7 — k| <3¢ ! by (7) and (8). Therefore the sum in (10) is finite for each z, and

E(Z,z) is a C%-function by (6) and (10). We want to show that the Hessian of
E(2,z) satisfies a good lower bounds. Let z € suppiy, and 1y (z) > 1. Then by
(5) and (9),

O(Yr (7', 2)(Ar(2) — 2))(L, L)
= 90Yi (2, 2)(L, L) (A (2) — 2) + 2Re(Lapy ) (LAg) + ¥ d0A (L, L)

_ _ 1 — _
> 00k(2, 2)(Ak(2) — 2) — 20, | Loy |* — 2n|LAk|* + ZaﬁAk(L, L)
> —C2*F|L) — 20 2°%|L|* + %aéAk(L,Z)
> (_0/22ek + %a_2€226k)‘[/|2

Z 226k’L‘2,
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if @ and 7 are iufﬁciently small._If we look at the proof of Theorem 3.5 in [7], we
can see that 99Ag(2)(L, L) ~ 00A;(2)(L, L) if suppyr N suppyp; # O (Remember
z € suppy; for a fixed finite number of j’s independent of z’). Therefore we can
get

(11) 00E(',%)(L, L) 2 2“2 L P,

if @ and 7 are sufficiently small (depending on €). Since Ay, is defined on Sy-«,
and since F(2',z) ~ —27% \,_x, and hence E(Z/, z), is well defined on Sy—x,, for
all k sufficiently large (i.e., NV is large enough). We now show how we push out the
boundary of € near z’. By the estimate (6) one can get;

(12) |DYE(2, z)| < a~lolglal=k
for z € suppy. For all t sufficiently small, define

(13) pe(Z',2) =r(z) +tE(Z, 2).

Then p;(2’,) is a defining function of a hypersurface in V”. In fact since a(?crn ~ 1

(zn = x, + iyy), it follows that for all small ¢, ggt (2,z) ~ 1. Hence for any

z € V" N1, there exists only one point Z on the segment through z obtained by
varying x,,, which satisfies p; (2, 2) = 0, for all t < t(, provided that tg is sufficiently
small. Notice that this ¢y is independent of 2’ € V'. Set S, ,» = {z;p:(#',2) = 0}.
Since E(z',2') = 0 and E(Z',2) < 0 for z € V" — {z'}, the properties (i), (ii),
(iii), (iv) and (vi) clearly holds. To prove (v), we claim that the hypersurface S; ./
is pseudoconvex at each point Z € S; ./, provided z is sufficiently close to 2/, say
|z — 2| < d where d is independent of z’. Suppose L"p;(z',Z) = 0, and |L"| = 1.
Then L” can be written as,

L// = tlLl + ...+ tn—an—l + eLn =T+ €Ln,

where Lq,...L,_1,L, are local frames defined on V" such that Ljr = 0, j =
1,2,..,n—1,and L,r >0 on V". Let Z € suppyy and yx(z',Z) > . Then,

L'p(2',2) = L"r(Z2) +tL"E(, 2)
=Tr(z)+eL,r(Z) + t(TE(Z,2) + eL, E(Z, 2))
=e(L,r(2) +tL,E(z',2)) +tTE(z',2) = 0.

Since |[tL, E(2',2)| << 1, we have |e| < t|TE(2',2)| <t << % if ¢ is sufficiently
small. Again if [j — k| < 3e™!, then we can get

(14) OOE(',2)(T,T) 2 27 * 00\, (2)(T,T) 2 2~ *|TA;(2)?
and
(15)  QOE(Z,2)(T,T) = 27* 90N, (T, T) > 2~ 420k |2 > o= (4=20)k
This implies that
ITA;(2)| < 2%%(80E(2',3)(T,T))?, and
Toy(2', 2)| S 25 S 2°M(99E(<, 2)(T,T))*.

S
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Thus we obtain that

t\)h—t

(16) e S UTE(,2)| S 2272 (0DE(+', 2)(T,T))*.
If we combine (12), (14), (15) and (16) we can get;

(L, L") +t00E (<, z)(L", T
( WT,T) + tddE(2', )(T,T) + O(e)
T,7))%((99B(z', 2)(T,T)

0dpi(, 2)(L", ") =

dor
dor

> t(0OE(2', Z)( T)): — C272F)
> HODE(Z', 2)(T,T))? (2-29k — c272)

> 1272%(90E(', 3)(T, T))? (2% — C)

> go(—4+ek 2

R 2L,

if k is sufficiently large (i.e., N is large enough ). Here we have used the fact
that 09r(2)(T,T) > 0 and |T| > 1. Also, we may assume that N can be chosen
independently to 2z’ € V' Nb§dy. T hlS proves (v).

To prove (vii), let z € suppiy. Then d(2/,z) ~ 272 and p;(2/,2) ~ —2
Therefore (vii) holds for all z € VN {z:r(z) < 0} with K = 2¢~!, and this proves
Theorem 3. [

Remark. In (7) if we replace ¢ (z) by ¢r(z) = @(kz) and A = Ag-rg by A =
Ap—2c-1, then the hypersurfaces {z : pi(z,2") = 0} in Theorem 3 will be C*°. There-
fore we have a smooth bumping theorem. But in this case, the property (vii) of
Theorem 3 will not be true.

—4k

4. Boundary behavior of the Kobayashi metric.

We now want to use the result of Theorem 3 to prove a boundary behavior of
the Kobayashi metric, Kq, near a point zy of finite type, i.e., Kq tends to infinite
near zo at least as =< does for a defining function r of Q near zy and some ¢’ > 0.
We adopt Diederich and Fornaess’ method [10] to estimate the Kobayashi metric
near b{),.

Theorem 7. ([10], Theorem 3) Let r be a real-valued C?-function on a neighbor-
hood V' C C™ of 0 with the following properties:

(1) 7(0) =0

(2) dr #0 everywhere on V.

(3) The hypersurface S = {z € V" : r(z) = 0} is pseudoconvez from the side

r <0.

Then, for every n, 0 < n < 1, there exists an open neighborhood V! C V" of 0, a
strictly plurisubharmonic function p on U = {z € V' : r(z) < 0} and a constant
C > 1 such that —C|r|" < p < —&|r|" on U. Furthermore, the data C' and V' can
be chosen independently of small C?-perturbations of r on v satisfying conditions

(1), (2), (3) from above.

Let us now prove Theorem 1. Let zg € b2 and V" DD V' 5 z9 be the neigh-
borhoods as in Theorem 3. Choose also ty > 0 sufficiently small so that Theorem
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3 holds on V" and set p(z’,2) = pi,(2',2). In a first step we apply Theorem 7 to
the family of hypersurfaces

S, ={ze V" p(z, 2z)=0}

for 2! €uan V’. According to Theorem 7, we can choose an open neighborhood
V' C V" of zp in the z'-variable, a constant C' > 0 such that for each 2’ € bQN V",
there is a strictly plurisubharmonic function ¢,/ (z) on V' N{p(2’, z) < 0} satisfying

a7) —Clp(! A" < 62(2) < ol AN

for all z € j/’ "and for all 2’ € bQ N V'. If we shrink V’/ and V", we may assume
that V/ =V’ and V" = V”. Combining (17) and the property (vii) of Theorem 3,
one can get the important estimate

(18) (2P 2) < g (2)

forall z € V' NQ, 2/ € b6QNV’. The estimates (17), (18) and (vii) of Theorem 3
are the essential estimates necessary to prove the boundary behavior of Kobayashi
metric on € in [10]. If we follow Diederich and Fornaess procedure from this point
on, we can get, for all z € V" N Q and for all X € C",

(19) Ko(z; X) > ¢|X||r(z)| =/
with a constant ¢ > 0 independent of z and X.

Remarks
(1) By the Remark in [10], ¢ > 0 in Corollary 2 can be chosen arbitrary close
to €, i.e., € =€ — p for arbitrary small p > 0.
(2) Using the holomorphic coordinate functions up to the boundary [4], and
using the definition of finite type for the manifolds [6,7], Theorem 1 can be
proved if €y CC M; and Q9 CC Ms for some Stein manifolds M7, Ms.
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